Math jam and Candy Math
St. Joseph's School | 5th Grade | Math | 3/18/09 and 3/19/09| Present: 24
students, teacher and myself | 3 hours field experience including
reflection time
This seemed to be the wrap up week for covering Fractions and equivalency concepts related to it. I witnessed two major activities that were instructive from a teaching perspective.
Math Jam
————
The teacher had students suggest numbers to simplify and manipulate for equivalency. A student would suggest a number and then the students would work individually to simplify it. Then they would find equivalent forms. After working individually, one of the students would come to the board and share what they did. Another student would do the same. Then, they would all discuss the various methods seen and why they worked or did not.
This process was very effective. Here's why:
– it put students in the driver's seat for coming up with problems to be solved
– it allowed for individual learning
– it allowed for shared learning
– it validated multiple methods
– it allowed students to learn from each other and pick methods that worked for them
– often students would come up with a new method and their classmates would "get" that better than what the teacher had taught them
This process has many elements of great collaborative learning. I was amazed by how easily this teacher introduced and incorporated so many elements into the process.
Candy Math
————–
This is a very popular activity in this classroom. Students look forward to it as one of the milestones of having learned fractions. I was moved to see a legendary activity take place and the anticipation with which students looked forward to it.
Here's how Candy Math works: Each student gets a packet of Skittles. They make predictions of how many total Skittles there will be in the packet and how many of each color. They determine the fractional and percentage representation of the various colors. They then open the packet and count the actual total and color numbers. Then they repeat the fractional and percentage computations. Finally, they do a bar graph that compares their predictions with the actual numbers.
I witnessed the start of the process as part of which students do their predictions. It was fascinating to see students make predictions and then work to determine the fractional part. Then as the moved onto determining the percentages, they wanted to change their predictions so the division they had to do was simpler. Interesting and clever?! Math in action!
I watched as the children struggled with the division. They had to recall long division steps. I wondered if there is a way to understand long division more intuitively so students might be able to create the steps themselves on the fly instead of recalling them from memory. I have not yet thought of a way to do long division more intuitively.
The class ended with students still working on figuring out percentages.
I appreciated this activity — it gets students to do many different math computations, all motivated by something they enjoy — candy. That said, the inherent motivation of the activity struck me as being a little artificial — I cannot imagine sitting down to count candy, figure out fractions and percentages based on it as a natural, daily living activity.